[Gau14]A. Gaul. Recycling Krylov subspace methods for sequences of linear systems. PhD thesis. TU Berlin, 2014.
[GauGLN13]A. Gaul, M. H. Gutknecht, J. Liesen, and R. Nabben. A framework for deflated and augmented Krylov subspace methods. SIAM J. Matrix Anal. Appl., 34 (2013), pp. 495-518.
[GolV13]G. H. Golub and C. F. Van Loan. Matrix Computations. Fourth edition. Johns Hopkins University Press, Baltimore, MD, 2013.
[Gre97]A. Greenbaum. Iterative methods for solving linear systems. Vol. 17. Frontiers in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1997.
[LieS13]J. Liesen and Z. Strakoš. Krylov subspace methods. Principles and analysis, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013.
[SifEM13]J. A. Sifuentes, M. Embree and R. B. Morgan. GMRES Convergence for Perturbed Coefficient Matrices, with Application to Approximate Deflation Preconditioning. SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1066-1088.
[Ste11]G. W. Stewart. On the numerical analysis of oblique projectors. SIAM J. Matrix Anal. Appl., 32 (2011), pp. 309-348.
[Str92]Z. Strakoš. On the real convergence rate of the conjugate gradient method. Linear Algebra Appl., 153/156 (1991), pp. 535–549.